
Part 3.3 Differentiation v1 2019-20

Taylor Polynomials

Definition 3.3.1 (Taylor 1715 and Maclaurin 1742) If a is a fixed number,
and f is a function whose first n derivatives exist at a then the Taylor

polynomial of degree n for f at a is

Tn,af(x) = f(a) + f ′(a) (x− a) +
f ′′(a)

2!
(x− a)2 + ...+

f (n)(a)

n!
(x− a)n .

Alternatively,

Tn,af(x) =
n

∑

r=0

f (r)(a)

r!
(x− a)r ,

where f (0)(x) = f(x).

Though it may appear daunting to calculate all these derivatives, if the
function f has a trigonometric factor there is often a pattern in the derivatives
that can be exploited.

Example 3.3.2 Calculate

T8,0 (e
x sin x) .

Solution If f(x) = ex sin x then

f(x) = ex sin x

f (1)(x) = ex sin x+ ex cos x

f (2)(x) = ex sin x+ ex cos x+ ex cos x− ex sin x

= 2ex cos x

f (3)(x) = 2ex cos x− 2ex sin x

f (4)(x) = 2ex cos x− 2ex sin x− 2ex sin x− 2ex cos x

= −4ex sin x.

The important observation is that f (4)(x) = −4f(x), for this means that

f (5)(x) = −4f (1)(x) , f (6)(x) = −4f (2)(x) , f (7)(x) = −4f (3)(x)

and
f (8)(x) = −4f (4)(x) = 16f(x) .
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Thus

f(0) = 0, f (1)(0) = 1, f (2)(0) = 2, f (3)(0) = 2, f (4)(0) = 0,

f (5)(0) = −4, f (6)(0) = −8, f (7)(0) = −8, f (8)(0) = 0.

Hence

T8,0 (e
x sin x) = 0 + x+ 2

x2

2!
+ 2

x3

3!
+ 0

x4

4!
− 4

x5

5!
− 8

x6

6!
− 8

x7

7!
+ 0

x8

8!

= x+ x2 +
x3

3
−

x5

30
−

x6

90
−

x7

630
.

�

Note When the function f contains trigonometric functions we often find
a relationship between f and f (4) as we saw above. Such relations should
always be exploited to reduce work.

Illustrating Example 3.3.2 the blue line is ex sin x, the red line is T8,0 (e
x sin x).
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This pattern in derivatives can be seen again in

Example 3.3.3

T4,0

(

cos2 x
)

= 1− x2 +
1

3
x4.
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Solution Let f(x) = cos2 x. Then f (1)(x) = −2 cosx sin x = − sin 2x. It is
important to write it in this way because, continuing,

f (2)(x) = −2 cos 2x and f (3)(x) = 4 sin 2x = −4f (1) (x) .

This relation between third and first derivatives means that f (n)(x) = −4f (n−2) (x)
for all n ≥ 3 which simplifies the calculations of

f(0) = 1, f (1)(0) = 0, f (2)(0) = −2, f (3)(0) = −4f (1)(0) = 0,

and f (4)(0) = −4f (2)(0) = 8. Thus

T4,0

(

cos2 x
)

= 1 + 0x− 2
x2

2!
+ 0

x3

3!
+ 8

x4

4!
= 1− x2 +

x4

3
.

�

Illustrating Example 3.3.3.

cos2 x

1−x
2+ x

4

3

1 2 3−1−2

x

y

The next example illustrates a method which can often be applied when
f is a quotient.

Example 3.3.4 With

f(x) =
ex

1 + x

calculate T5,0f(x).

Solution Because differentiating quotients leads to complicated expressions
we yet again follow the principle of ridding ourselves of fractions by multi-
plying up as

(1 + x) f(x) = ex.
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Then repeated differentiation gives

(1 + x) f ′(x) + f(x) = ex, thus f ′(0) + f(0) = 1.

(1 + x) f
′′

(x) + 2f ′(x) = ex, thus f
′′

(0) + 2f ′(0) = 1.

(1 + x) f (3)(x) + 3f
′′

(x) = ex, thus f (3)(0) + 3f ′′(0) = 1.

(1 + x) f (4)(x) + 4f (3)(x) = ex, thus f (4)(0) + 4f (3)(0) = 1.

(1 + x) f (5)(x) + 5f (4)(x) = ex, thus f (5)(0) + 5f (4)(0) = 1.

Starting from f(0) = 1 we can solve to get f ′(0) = 0, f
′′

(0) = 1, f (3)(0) = −2,

f (4)(0) = 9 and f (5)(0) = −44. Then

T5,0

(

ex

1 + x

)

= 1 + 0x+ 1
x2

2!
− 2

x3

3!
+ 9

x4

4!
− 44

x5

5!

= 1 +
1

2
x2 −

1

3
x3 +

3

8
x4 −

11

30
x5.

�

Illustrating Example 3.3.4

T5,0f(x)

ex

1+x

1 2 3−1−2

x

y

Questions; how well does Tn,af(x) approximate f(x), does Tn,af(x) converge
as n → ∞ and, if it does, does it converge to f(x)? These questions can be
answered by studying the difference f(x)− Tn,af(x).

Definition 3.3.5 The Remainder, Rn,af(x) , is defined by

Rn,af(x) = f(x)− Tn,af(x) . (1)
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Note that when t = x in the definition of Tn,tf(x) we get

Tn,xf(x) = f(x) + f ′(x) (x− x) +
f ′′(x)

2!
(x− x)2 + ...+

f (n)(x)

n!
(x− x)n

= f(x) . (2)

Thus the remainder can be written as

Rn,af(x) = Tn,xf(x)− Tn,af(x) .

So we are looking at the difference of a function of t, namely Tn,tf(x), at
t = x and t = a. With an application of the Mean Value Theorem in mind,
this makes us ask how Tn,tf(x) changes as t varies.

We start with quite an amazing result, that the derivative w.r.t t of the
polynomial Tn,tf(x) should be so simple!

Lemma 3.3.6 If the first n+1 derivatives of f exist on an open neighbour-
hood of x then

d

dt
Tn,tf(x) =

(x− t)n

n!
f (n+1)(t) ,

for all t in the open neighbourhood.

Proof in the lectures observes at one point that a term from one bracket
in a series cancels a term in the next bracket. Here we give a more formal
proof, based on manipulating series.

By definition

Tn,tf(x) =
n

∑

r=0

f (r)(t)

r!
(x− t)r .

This is differentiable w.r.t t if, and only if, every f (r), 0 ≤ r ≤ n is
differentiable. Yet f (i+1) differentiable implies f (i) differentiable so Tn,tf is
differentiable if, and only if, f (n), is differentiable, that is, f is n+1 times
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differentiable. Since we are assuming this we can continue:

d

dt
Tn,tf(x) =

d

dt

n
∑

r=0

f (r)(t)

r!
(x− t)r

=
d

dt

(

f(t) +
n

∑

r=1

f (r)(t)

r!
(x− t)r

)

= f (1)(t) +
n

∑

r=1

(

f (r+1)(t)

r!
(x− t)r −

f (r)(t)

(r − 1)!
(x− t)r−1

)

= f (1)(t) +
n

∑

r=1

f (r+1)(t)

r!
(x− t)r −

n
∑

r=1

f (r)(t)

(r − 1)!
(x− t)r−1 .

In the second sum we change variable from r to r− 1, which we then relabel
as r, so r now runs from 0 to n− 1. Thus

d

dt
Tn,tf(x) = f (1)(t) +

n
∑

r=1

f (r+1)(t)

r!
(x− t)r −

n−1
∑

r=0

f (r+1)(t)

r!
(x− t)r

= f (1)(t) +

(

n−1
∑

r=1

f (r+1)(t)

r!
(x− t)r +

f (n+1)(t)

n!
(x− t)n

)

−

(

n−1
∑

r=1

f (r+1)(t)

r!
(x− t)r + f (1)(t)

)

=
f (n+1)(t)

n!
(x− t)n .

�

An application of the Mean Value Theorem gives

Theorem 3.3.7 Taylor’s Theorem with Cauchy’s form of the error. If
the first n + 1 derivatives of f exist on an open interval containing a and x
then

Rn,af(x) =
f (n+1)(c)

n!
(x− c)n (x− a) (3)

for some c between a and x.
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Proof Consider

Rn,af(x)

x− a
=

f(x)− Tn,af(x)

x− a
by definition of Rn,a,

=
Tn,xf(x)− Tn,af(x)

x− a
.

by (2). Let h(t) = Tn,tf(x) so we can rewrite the last equality as

Rn,af(x)

x− a
=

h(x)− h(a)

x− a
= h′(c) ,

for some c between a and x by the Mean Value Theorem applied to h. Con-
tinuing

h′(c) =
d

dt
Tn,tf(x)

∣

∣

∣

∣

t=c

=
(x− c)n

n!
f (n+1)(c) ,

by Lemma. �

This result has a weakness in that the unknown c occurs in two terms on
the right hand side. Strange that Cauchy’s error was derived using the Mean
Value Theorem; what would follow from Cauchy’s Mean Value Theorem?
Recall Cauchy ’s Mean Value Theorem, that if g, h are continuous on [a, b],
differentiable on (a, b) and g′(x) 6= 0 for all x ∈ (a, b) then there exists
c ∈ (a, b) such that

h(b)− h(a)

g(b)− g(a)
=

h′(c)

g′(c)
.

An argument based on this gives

Theorem 3.3.8 Taylor’s Theorem with Lagrange’s form of the error (1797).
If the first n+ 1 derivatives of f exist on an open interval containing a and
x then

Rn,af(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1 (4)

for some c between a and x.

Proof Consider x to be fixed. As in previous proof let h(t) = Tn,tf(x) and
g to be chosen but continuous on [a, x], differentiable on (a, x) and with
g′(t) 6= 0 for all t ∈ (a, x) . Then
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Rn,af(x)

g(x)− g(a)
=

Tn,xf(x)− Tn,af(x)

g(x)− g(a)
as in above proof,

=
1

g′(c)

d

dt
Tn,tf(x)

∣

∣

∣

∣

t=c

by Cauchy’s M. V. Theorem,

=
(x− c)n

n!g′(c)
f (n+1)(c) ,

by Lemma. If we choose g′(t) = (x− t)n then

Rn,af(x)

g(x)− g(a)
=

(x− c)n

n! (x− c)n
f (n+1)(c) =

f (n+1)(c)

n!
,

which multiplies up to give

Rn,af(x) = (g(x)− g(a))
f (n+1)(c)

n!
.

The right hand side now only contains one occurrence of the unknown c,
as required. Integrate this choice of g′ to get

g(x)− g(a) =

∫ x

a

g′(t) dt =
(x− a)n+1

n+ 1
.

Thus

Rn,af(x) = (g(x)− g(a))
f (n+1)(c)

n!
=

(x− a)n+1

(n+ 1)

f (n+1)(c)

n!

as required. �

In Theorem 3.3.8 we now have only one occurrence of the unknown c,
along with a larger denominator. If we set h = x − a in Taylor’s Theorem
with Lagrange’s error we get

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + ...+

hn

n!
f (n)(a) +

+
hn+1

(n+ 1)!
f (n+1)(a+ θh)

for some 0 < θ < 1.
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Taylor’s Theorem is often used in Maclaurin’s Form which simply has
a = 0 :

f(x) =
n

∑

r=0

f (r)(0)

r!
xr +

f (n+1)(c)

(n+ 1)!
xn+1,

for some c between 0 and x.

As a first application of how well Tn,af(x) approximates f(x),

Example 3.3.9

∣

∣

∣

∣

ex sin x−

(

x+ 2
x2

2!
+ 2

x3

3!

)∣

∣

∣

∣

≤
e|c|

6
x4.

for some c between 0 and x.

Solution in Tutorial Note that from the workings of Example 3.3.2,

T3,0 (e
x sin x) = 0 + x+ 2

x2

2!
+ 2

x3

3!
, and f (4)(x) = −4ex sin x.

Then
∣

∣

∣

∣

ex sin x−

(

x+ 2
x2

2!
+ 2

x3

3!

)∣

∣

∣

∣

=
4 |ec sin c|

4!
x4 ≤

e|c|

6
x4.

for some c between 0 and x. �

You can, in fact, improve this result because f (4)(0) = 0. For then
T3,0 (e

x sin x) = T4,0 (e
x sin x). Thus

∣

∣

∣

∣

ex sin x−

(

x+ 2
x2

2!
+ 2

x3

3!

)∣

∣

∣

∣

=

∣

∣f (5)(c)
∣

∣

5!
|x|5 .

Now note that f (4)(x) = −4ex sin x implies f (5)(x) = −4 (ex sin x+ ex cos x).
So

∣

∣f (5)(c)
∣

∣ ≤ 8ec, and thus

∣

∣

∣

∣

ex sin x−

(

x+ 2
x2

2!
+ 2

x3

3!

)∣

∣

∣

∣

≤
e|c|

15
|x|5 .

Aside, one can do better than |sin x+ cos x| ≤ |sin x|+ |cosx| ≤ 2 by noting
that sin x + cosx = y +

√

1− y2 where y = sin x. Look for turning points

(at y = ±
√

4/5) and thus a maximum of
√

4/5 +
√

1/5 ≈ 1.34...
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Example 3.3.10 Use Lagrange’s form for the error to show that

∣

∣

∣

∣

cos2 x−

(

1− x2 +
1

3
x4

)
∣

∣

∣

∣

≤
2

15
|x|5 .

Hence show that

lim
x→0

cos2 x− 1 + x2

x4
=

1

3
.

Solution From Example 3.3.3 we have

T4,0

(

cos2 x
)

= 1− x2 +
1

3
x4.

Thus
∣

∣

∣

∣

cos2 x−

(

1− x2 +
1

3
x4

)
∣

∣

∣

∣

=
∣

∣cos2 x− T4,0

(

cos2 x
)∣

∣

=
∣

∣R4,0

(

cos2 x
)∣

∣

=

∣

∣

∣

∣

f (5)(c)

5!
x5

∣

∣

∣

∣

,

for some c between 0 and x, by Lagrange’s error. As seen previously,

f (5)(x) = −4f (3)(x) = 16f (1)(x) = −16 sin 2x.

Thus
∣

∣

∣

∣

f (5)(c)

5!
x5

∣

∣

∣

∣

=
16

5!
|sin 2c| |x|5 ≤

2

15
|x|5 .

This gives the first stated result. For the second, divide through by x4 to
get

∣

∣

∣

∣

cos2 x− 1 + x2

x4
−

1

3

∣

∣

∣

∣

≤
2

15
|x| .

This can be opened out as

1

3
−

2

15
|x| ≤

cos2 x− 1 + x2

x4
≤

1

3
+

2

15
|x|

Let x → 0 and quote the Sandwich Rule to get result. �
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Aside, we see that f (5)(0) = 0 which means that T4,0 (cos
2 x) = T5,0 (cos

2 x).
Then

∣

∣

∣

∣

cos2 x−

(

1− x2 +
1

3
x4

)
∣

∣

∣

∣

=
∣

∣R5,0

(

cos2 x
)
∣

∣ =

∣

∣

∣

∣

f (6)(c)

6!
x6

∣

∣

∣

∣

.

Now f (6)(x) = 16f (2)(x) = −32 cos 2x. Thus

∣

∣

∣

∣

cos2 x−

(

1− x2 +
1

3
x4

)∣

∣

∣

∣

=
32

6!
|cos 2c| |x|6 ≤

2

45
|x|6 .

This is an improvement over the previous bound as long as |x| < 3.
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Taylor Series

Definition 3.3.11 If all the higher derivatives of f exist in some neighbour-
hood of a ∈ R then the Taylor Series of f at a is

∞
∑

r=0

f (r)(a)

r!
(x− a)r . (5)

There are two immediate questions.

Question 1. Does the series converge?

This series trivially converges at x = a. Being a power series we can use
tests from MATH10242, such as the Ratio Test or Comparison Tests to find
an R ≥ 0 for which

• if |x− a| < R then the series converges at this x,

• if |x− a| > R then the series diverges at this x,

• while if |x− a| = R the series may, or may not converge at such x.

Here R is called the radius of convergence. It is possible that R = ∞, for
example the series for ex. It is possible that R = 0; an example was given by
Lerch in 1888 of a function well-defined on R yet whose Taylor series diverges
for all x 6= 0.

Question 2. If the Taylor Series of f converges at x ∈ R does it converge
to f(x)?

Even if R > 0 and x0 6= a is in the interval of convergence, there is no
assurance that the value of the series at x0 equals f(x0). This is the case
with Cauchy’s example (1823), of

f(x) = e−1/x2

for x 6= 0 with f(0) = 0.

I leave this as a (hard) exercise for students. You will have to calculate
f (n)(0) for each n ≥ 1 by first principles, using the limit definition. It can be
shown in this way that f (n)(0) = 0 for all n ≥ 1. Thus the Taylor Series for
f(x) is

0 + 0x+ 0
x2

2!
+ 0

x3

3!
+ ...

which converges for all x ∈ R. But it’s sum is f(x) only when x = 0.
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Yet Question 2 does have an answer: Recall from the first year course, Se-
quences and Series, an infinite series is defined to be the limit of the sequence
of partial sums, if the limit exists. Thus

∞
∑

r=0

f (r)(a)

r!
(x− a)r = lim

n→∞

n
∑

r=0

f (r)(a)

r!
(x− a)r = lim

n→∞
Tn,af(x) .

So the Taylor Series of f converges to f for those x for which

lim
n→∞

Tn,af(x) = f(x) .

This can be rearranged to limn→∞ (f(x)− Tn,af(x)) = 0, the same as

lim
n→∞

Rn,af(x) = 0.

In most cases the limit of the remainder term as n → ∞ will make use of
the following result.

Lemma 3.3.12 For any y ∈ R we have

lim
n→0

yn

n!
= 0. (6)

Proof It is a result from First Year Sequences and Series that {yn/n!}n≥1 is
a null sequence.

It can be noted though that we have been assuming this result implicitly
in this course. We have defined ey by the infinite series

∑n
r=0 y

r/r!. Yet if an
infinite series converges its terms must tend to zero, which is the statement
of this Lemma. �

Application Consider Lagrange’s form of the error term

Rn,0f(x) =
f (n+1)(c)

(n+ 1)!
xn+1.

Assume we have a bound on the derivatives of f of the form
∣

∣f (n)(x)
∣

∣ ≤ g (x)Cn (7)

for some constant C > 0, and positive function g(x) , for all n ≥ 1. Then

|Rn,0f(x)| ≤ g(c)
(C |x|)n+1

(n+ 1)!
→ 0

as n → ∞, by (6), for the x for which (7) holds. That is, for such x,
Rn,0f(x) → 0, i.e. Tn,0f(x) → f(x) as n → ∞.
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Example 3.3.13 Find the Taylor Series for cos2 x around a = 0 and show
that the series converges to cos2 x for all x ∈ R.

Solution If f(x) = cos2 x then f (1)(x) = −2 cosx sin x = − sin (2x) and, as
seen before, f (n)(x) = −4f (n−2)(x) for all n ≥ 3.

If n is odd then f (n)(0) will be a multiple of f (1)(0) = 0. So the only
non-zero terms will come from even n.

If n = 2r then

f (n)(x) = (−4)r−1 f (2)(x) = −2 (−4)r−1 cos 2x = (−1)r 2n−1 cos 2x.

Thus f (n)(0) = (−1)r 2n−1 if n = 2r is even.

Hence the Taylor Series for cos2 x is

1 +
∞
∑

n=1
n=2r even

(−1)r 2n−1x
n

n!
= 1 +

∞
∑

r=1

(−1)r 22r−1 x2r

(2r)!
.

For what x does limn→∞ Rn,0 (cos
2 x) = 0? By Lagrange’s form of the

error

Rn,0

(

cos2 x
)

= f (n+1)(c)
xn+1

(n+ 1)!

for some c between 0 and x. In the present case, we look at the modulus so
we don’t worry about the sign, when

∣

∣f (n+1) (c)
∣

∣ =

{

2n |cos 2c| if n+ 1 is even,

2n+1 |sin 2c| if n+ 1 is odd,

Then
∣

∣f (n+1)(c)
∣

∣ ≤ 2n+1 in both cases. Thus,

∣

∣Rn,0

(

cos2 x
)
∣

∣ ≤
(2 |x|)n+1

(n+ 1)!
→ 0

as n → ∞ for any x ∈ R by the Lemma above,. Hence the Taylor Series for
cos2 x converges to cos2 x for all x ∈ R. �

Example 3.3.14 The Taylor Series for (1 + x)t for t ∈ R, is

∞
∑

r=0

t (t− 1) ... (t− r + 1)

r!
xr,

and this converges to (1 + x)t when −1 < x < 1. This is a generalisation of
the Binomial Theorem.
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Solution see Appendix.

Example 3.3.15 The Taylor Series for ln (1 + x) is

∞
∑

r=1

(−1)r−1 xr

r
,

and this converges to ln (1 + x) when −1 < x ≤ 1. If we put x = 1 we get

ln 2 = 1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ... . (8)

Solution see Appendix.
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