Part 3.3 Differentiation vl 2019-20

Taylor Polynomials

Definition 3.3.1 (Taylor 1715 and Maclaurin 1742) If a is a fixed number,
and f is a function whose first n derivatives exist at a then the Taylor
polynomzal of degree n for f at a is

1" (n)
Taf (@) = fa) + Fa) (o —a) + T @ g T gy
Alternatively,
noof()
Toof@) =3 D (o —ay,
r=0 '

where fO(z) = f(x).

Though it may appear daunting to calculate all these derivatives, if the
function f has a trigonometric factor there is often a pattern in the derivatives
that can be exploited.

Example 3.3.2 Calculate
Tso (e"sinz) .

Solution If f(z) = e”sinx then

f(x) = e€°sinz
fO(x) = e®sinz 4+ e®cosx
fA(z) = esina+e®cosw 4 e cosx — e sina
= 2e"cosx
fO(x) = 2e®cosz — 2 sinz
fW(x) = 2e®cosz — 2" sina — 2% sinx — 2e” cos x
= —4e’sinz.

The important observation is that f*)(z) = —4f(x), for this means that

fO(a) = =4fV(a), fO2) = 4P (@), fO(x) = -4f(2)

and

fO2) = —4f W (x) = 16f(x).
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F0) = 0,77(0) = 1, f2(0) = 2, fH(0) = 2, f(0) = 0,
F0) = =4, fO(0) = =8, f7(0) = =8, f(0) = 0.

Hence
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Note When the function f contains trigonometric functions we often find
a relationship between f and f®* as we saw above. Such relations should
always be exploited to reduce work.

[ustrating Example 3.3.2 the blue line is e* sin z, the red line is Ty o (e sin x).
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This pattern in derivatives can be seen again in

Example 3.3.3
1
Tyo (C082 x) =1—a2?+ §$4.



Solution Let f(x) = cos?z. Then f)(z) = —2coszsinz = —sin2x. It is
important to write it in this way because, continuing,

f@(x) = —2cos2x and O (x) =4sin2z = —4fW (z).

This relation between third and first derivatives means that f™ (z) = —4f"=2) (2)
for all n > 3 which simplifies the calculations of

F(0) =1, f9(0) = 0, f2(0) = =2, f(0) = —4f(0) = 0,
and f®(0) = —4f®(0) = 8. Thus
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[lustrating Example 3.3.3.

The next example illustrates a method which can often be applied when
f is a quotient.

Example 3.3.4 With

calculate Ts o f ().

Solution Because differentiating quotients leads to complicated expressions
we yet again follow the principle of ridding ourselves of fractions by multi-
plying up as

(1+2) f(z) = e".



Then repeated differentiation gives

1+ ) f'(z) + flz
(1+2z) f (x) +2f' (=
(1+l“)f( () +3f"(x
(1+2) fD(2) + 43 (x
(1+2) fOx) + 59

= % thus f/(0)+ f(0)=1

)

) = €% thus f (0)+2f'(0) =

) = ¢, thus fO(0) +3f7(0) = 1.
)

)

( ) "
= ¢, thus f@(0) +4f®(0) =
1(0) +5£(0) =

) = €%, thus f©

Starting from f(0) = 1 we can solve to get f/(0) =0, f"(0) =1, f®(0) = -2,
f@(0) =9 and f©®(0) = —44. Then
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[lustrating Example 3.3.4

Ts,0f ()

Questions; how well does T, , f (z) approximate f(z), does T}, , f (x) converge
as n — oo and, if it does, does it converge to f(x)? These questions can be
answered by studying the difference f(x) — T, .f(x).

Definition 3.3.5 The Remainder, R, ,f(x), is defined by

Rpof () = f(2) = Thaf (). (1)



Note that when ¢ =  in the definition of T),;f(z) we get

Toof(x) = flo)+ f'(2)(z —x)+ fﬂz(!x) f(t;m

= [flz). (2)

Thus the remainder can be written as

Rn,af(x) = Tn,:pf(x) - Tn,af(x) .

(z—x)° + ..+

So we are looking at the difference of a function of ¢, namely T, .f(x), at
t = x and t = a. With an application of the Mean Value Theorem in mind,
this makes us ask how 7}, f(x) changes as t varies.

We start with quite an amazing result, that the derivative w.r.t ¢ of the
polynomial 7, ; f(x) should be so simple!

Lemma 3.3.6 If the first n+ 1 derivatives of f exist on an open neighbour-

hood of x then
(z—1)"

n!

d _ (n+1)
ETn,t.f(I) = f * (t> )

for all t in the open neighbourhood.

Proof in the lectures observes at one point that a term from one bracket
in a series cancels a term in the next bracket. Here we give a more formal
proof, based on manipulating series.

By definition
O .
L) =3 0wy
r=0

This is differentiable w.r.t ¢ if, and only if, every f), 0 < r < n is
differentiable. Yet f0+1) differentiable implies f® differentiable so Toif is
differentiable if, and only if, £, is differentiable, that is, f is nt+l times



differentiable. Since we are assuming this we can continue:

d d I~ fO(t) .
i@ = 2 e

n g plr) ")

rl

n o fplr+1) nooe(r)
= fOm+) f—(t) CRUIEDY ({ _(3! (=t

In the second sum we change variable from r to r — 1, which we then relabel
as r, so r now runs from 0 to n — 1. Thus

d noop(r41) n=l p(r41)
Fhif@ = 0+ Iy - ey

= f(l)(t) + nz: m (z—1)" + M (z — t)ﬂ)

— 7! n!
— f(r+1)( ) T 1
- L R L)

An application of the Mean Value Theorem gives

Theorem 3.3.7 Taylor’s Theorem with Cauchy’s form of the error. If
the first n 4+ 1 derwatives of f exist on an open interval containing a and x
then

f("H)(C)

n!

Rpof (1) = (z—¢)" (z —a) (3)

for some ¢ between a and x.



Proof Consider

Bnafl@) - J(0) = Toal @)y oinition of R,
r—a z—a

Tn,:cf<x> - Tn,af(x)

r—a )

by (2). Let h(t) = T,,+f(z) so we can rewrite the last equality as

Rn,af(*r) _ h(l’) _ h(a) _ h/(c)

Tr —a Tr—a

for some ¢ between a and = by the Mean Value Theorem applied to h. Con-
tinuing

(z —o)" (n+1)

Tf (c),

d
h/(c) = ETn’tf(a:) =

t=c

by Lemma. [ |

This result has a weakness in that the unknown ¢ occurs in two terms on
the right hand side. Strange that Cauchy’s error was derived using the Mean
Value Theorem; what would follow from Cauchy’s Mean Value Theorem?
Recall Cauchy’s Mean Value Theorem, that if g, h are continuous on [a, b],
differentiable on (a,b) and ¢'(x) # 0 for all x € (a,b) then there exists
¢ € (a,b) such that

An argument based on this gives

Theorem 3.3.8 Taylor’s Theorem with Lagrange’s form of the error (1797).
If the first n + 1 derivatives of f exist on an open interval containing a and

T then
S (e)

Ryof(r) = CE (z—a)"" (4)

for some ¢ between a and x.

Proof Consider z to be fixed. As in previous proof let h(t) = T, f(x) and
g to be chosen but continuous on [a,z|, differentiable on (a,z) and with
g'(t) #0 for all t € (a,z). Then



Rn,af(x) _ Tn,zf(x) B Tn,af(x)
g(z) — g(a) g9(z) — g(a)

as in above proof,

- +f(x) by Cauchy’s M. V. Theorem,

_ (x_c)n (n+1) c
nlg'(c) ().

by Lemma. If we choose ¢'(t) = (x — )" then

Rn,af(x) _ (JT B C)n
g(x) —gla)  nl(z—c)

(n+1)
2100 = TG,

which multiplies up to give

(n+1)
Roaf(x) = (glx) — gla)) 9.

n!

The right hand side now only contains one occurrence of the unknown c,
as required. Integrate this choice of ¢’ to get

gw—awzfﬁwﬁzgiﬂl.

n+1
Thus
fr(e)  (w— )" [0 (e)
Rn,af(x) = (g(ZE) - g(a)) n! - (TL + 1) n!
as required. [ |

In Theorem 3.3.8 we now have only one occurrence of the unknown c,

along with a larger denominator. If we set h = x — a in Taylor’s Theorem
with Lagrange’s error we get

fla+h) = f(a)+hf'(a)+ %f”(a) + ..+ %f(”)(a) +
thrl

+(n+ 1)!

f("H) (a + 6h)

for some 0 < 6 < 1.



Taylor’s Theorem is often used in Maclaurin’s Form which simply has
a=0:

f f”H)(C) n
Z (n+1)! =,

for some ¢ between 0 and x.

As a first application of how well T}, , f(z) approximates f(x),

Example 3.3.9

21 3l

2 3 |c]
x x e
e’sinx — (w+2—+2 )‘ < —at
for some ¢ between 0 and x.

Solution in Tutorial Note that from the workings of Example 3.3.2,

2 3

Tso(e"sinz) =0+ + 2% + 25, and fW(z) = —4e®sin .
Then
. 2 4lecsine| , el ,
e’sinx — (x+2§+23 )‘ :Tx SFx .
for some ¢ between 0 and x. |
You can, in fact, improve this result because f¥(0) = 0. For then

T50(e*sinz) = Ty (e”sinx). Thus

22
T si — 2— +2
e’sinx (m—i— 9] + 3|)‘

Now note that ¥ (z) = —4e®sinx implies fO®)(2) = —4 (e”sinx + e* cos ).
So ‘f ‘ < 8¢, and thus

2 .3
e“sinx — (x—i—?a 2§)’ < E| z|”.

Aside, one can do better than [sinz 4 cos x| < [sin x|+ |cos z| < 2 by noting
that sinx + cosx = y + /1 — y? where y = sinz. Look for turning points

(at y = £4/4/5) and thus a maximum of \/4/5 + /1/5 ~ 1.34...

|f(5) || |




Example 3.3.10 Use Lagrange’s form for the error to show that

1
cos?r — (1 — 2?4 §x4> >

]

< =
— 15

Hence show that
cos’r —1+2% 1
im = —.
z—0 xrd 3

Solution From Example 3.3.3 we have

Tyo (COS2 x) =1-2%+ éx‘l.

Thus

cos®> v — (1 — 2+ %x‘l) ‘ = !cos2 x— Ty (0032 x)‘

= {R470 (cos® x)|

'f(5)(0) 25
5!

)

for some ¢ between 0 and x, by Lagrange’s error. As seen previously,
fO) = —4f®O(x) = 16V (z) = —16sin 2z,

Thus

16 . 5_ 2 5
=5 |sin 2¢| |z|” < B |z]”.

f(5)(c) 5
’ T

This gives the first stated result. For the second, divide through by z* to
get

cosx—1+22 1
x4 3

This can be opened out as

1 2 cos’x — 1+ 22
L2 <
3 15 x

Let x — 0 and quote the Sandwich Rule to get result. |
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Aside, we see that £ (0) = 0 which means that Ty (cos?z) = Ts (cos? z).
Then

6!

(6)
cos® T — <1 —z? + %x‘l)’ = ‘R5,0 (COS2 w)‘ = ‘f (C)x6 :

Now f©(z) = 16f®(z) = —32cos 2x. Thus

1 32 2
cos® T — (1 —2® + §x4) ‘ = |cos 2¢| |z]® < YT |z|® .

This is an improvement over the previous bound as long as |z| < 3.
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Taylor Series

Definition 3.3.11 If all the higher derivatives of f exist in some neighbour-
hood of a € R then the Taylor Series of f at a is

%) (g
S Wy )

r

There are two immediate questions.

Question 1. Does the series converge?

This series trivially converges at x = a. Being a power series we can use
tests from MATH10242, such as the Ratio Test or Comparison Tests to find
an R > 0 for which

e if |z —a| < R then the series converges at this z,
e if |z — a| > R then the series diverges at this z,

e while if |z — a| = R the series may, or may not converge at such x.

Here R is called the radius of convergence. It is possible that R = oo, for
example the series for e”. It is possible that R = 0; an example was given by

Lerch in 1888 of a function well-defined on R yet whose Taylor series diverges
for all = # 0.

Question 2. If the Taylor Series of f converges at x € R does it converge
to f(x)?

Even if R > 0 and xg # a is in the interval of convergence, there is no
assurance that the value of the series at zy equals f(zg). This is the case
with Cauchy’s example (1823), of

flz) = e V" for & # 0 with f(0) = 0.

I leave this as a (hard) exercise for students. You will have to calculate
f™(0) for each n > 1 by first principles, using the limit definition. It can be
shown in this way that f("(0) = 0 for all n > 1. Thus the Taylor Series for

f(z) is

2 3

X X

which converges for all z € R. But it’s sum is f(x) only when z = 0.

12



Yet Question 2 does have an answer: Recall from the first year course, Se-
quences and Series, an infinite series is defined to be the limit of the sequence
of partial sums, if the limit exists. Thus

S e = S ) = i Taf)
r=0 ’ 0 |

-
So the Taylor Series of f converges to f for those x for which
Jim T f () = f().
This can be rearranged to lim, o (f(x) — T, o f(x)) = 0, the same as
lim R, ,f(x)=0.
n—oo

In most cases the limit of the remainder term as n — oo will make use of
the following result.

Lemma 3.3.12 For any y € R we have
lim 2 = 0. (6)

Proof It is a result from First Year Sequences and Series that {y"/n!}, ., is
a null sequence.

It can be noted though that we have been assuming this result implicitly
in this course. We have defined e? by the infinite series Y "_ 4" /r!. Yet if an
infinite series converges its terms must tend to zero, which is the statement
of this Lemma. [ |

Application Consider Lagrange’s form of the error term

(n+1)
Rnof(x) = JETH— 1<>C,) e

Assume we have a bound on the derivatives of f of the form

|fW (@) < g(x)C" (7)
for some constant C' > 0, and positive function g(z), for all n > 1. Then
(C )"

(n+1)!

as n — o0, by (6), for the x for which (7) holds. That is, for such =z,
R,of(x) = 0,1e. T,of(x) = f(z) as n — oo.

[ Rnof ()] < g(c)
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Example 3.3.13 Find the Taylor Series for cos® x around a = 0 and show
that the series converges to cos®x for all v € R.

Solution If f(x) = cos?x then f)(x) = —2cosxsinz = —sin (2z) and, as
seen before, f(™(x) = —4f"=2)(x) for all n > 3.
If n is odd then f("(0) will be a multiple of f(0) = 0. So the only

non-zero terms will come from even n.

If n = 2r then
fO(x) = (—4)"" fP(x) = —=2(—=4)" " cos 2z = (—1)" 2" ! cos 2.

Thus f™(0) = (—1)" 2" if n = 2r is even.

Hence the Taylor Series for cos? z is

1+ i (—1) 2"1 —1+Z 22”;)!.
n=1

n=2r even

For what z does lim,, ;o Ry (cos?z) = 07 By Lagrange’s form of the

error

xn—i—l

(n+1)!
for some ¢ between 0 and x. In the present case, we look at the modulus so
we don’t worry about the sign, when

R0 (cos®z) = F ()

| (n1) 0] - 2™ |cos 2¢] if n+ 1 is even,
| 27t |sin2e| if n+ 1is odd,

Then | f"*1(c)| < 2"*! in both cases. Thus,

(22"

—0
(n+1)!

‘Rn,O (COS2 x)‘ <

as n — oo for any x € R by the Lemma above,. Hence the Taylor Series for
cos? x converges to cos? x for all x € R. [ |

Example 3.3.14 The Taylor Series for (1 + .CE)t fort e R, s

oo

t(t—1) t—r—l—l) .
T

’

*M

and this converges to (1 + x)t when —1 < x < 1. This is a generalisation of
the Binomial Theorem.
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Solution see Appendix.

Example 3.3.15 The Taylor Series for In (1 + x) is
r=1 r

and this converges to In (1 + x) when —1 < x < 1. If we put x = 1 we get

1 1 1 1 1
In2=1—--+-—=-4+—-—=+....
n 2+3 4—|—5 6+ (8)

Solution see Appendix.
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